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VI. Beyond Li-lon Batteries

1. Definitions: Beyond Lithium lon, before Lithium lon, and parallel to
Lithium lon

2. How to make high-energy-density (“super”) batteries?

3. Specific energy vs. energy density: a necessary look at new cell
chemistries

4. Lithium/sulfur chemistry
5. Lithium/air chemistry
6. Solid electrolytes: polymeric and ceramic electrolytes

7. Alternative chemistries: Na, Na-lon, Mg, Al, Dual-lon
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Lithium-lon Batteries (LIBs) were first

commercialized by SONY in 1991." Primary (non-rechargeable), secondary (rechargeable),
e.g. Zn/Mn0O; (1866) E g Lead-Acid [1854), e.g., gel-LA
Li Metjl (1970) :: Ni/Cd (1899), Ni/MH (1962)

; ] 2., Lifl; solid stat i i
Batteries, in general, are more than 200 Mg, CaThesmal Batieries : B ) oy %8
years old. P P

: [ lithiumlnn[LIB]] :
- {1991) A
Many rechargeable and non-rechargeable L :
(primary) battery systems have been E :

developed since then (Before-LIB). A few E
are still relevant today (Parallel-to-LIB) i Meta) e, e G-

Sodium lon, Dual-lan,
Solid-State: Gel, Polymeric, Ceramic,

Based on its unique mix of beneficial Etc.
performance and cost properties, the
LIB has become a benchmark for future
battery systems (Post-LIBs, PLIBs).

(Magnified figure on next slide)

Past experience with LIBs and Before-LIBs
will help to develop PLIBs

Magaura, Progress in Batteries & Solar Cells, 10, 218 (1991)
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Capacity and potential of the electrode materials determine the maximum achievable
cell energy density of LIBs and lithium-metal batteries.

The assignment as cathode or anode material proceeds according to the relative
electrode potentials (cf. discussion on standard reference potentials).

Specific capacity values are given in Ah/kg; volumetric capacities in Ah/L.
The number of state-of-the-art Li-metal and LIB electrode materials is limited (next slide)

There are numerous possible future LIB materials. The second next slide shows only a
few examples.

State-of-the-art and future LIB anode materials show significantly higher capacities than
LIB cathode materials.

Future anode materials show much higher capacities than carbon/graphite.
Future LIB cathode materials show higher voltages than state of the art - High voltage.

There is a mismatch in specific capacities of anode and cathode materials, even for
state-of-the-art LIB materials, whereas the volumetric capacities are better balanced.

For standard Li-metal batteries, the specific anode capacities are also misbalanced.
Future cathode materials, such as S and O, show a better specific capacity balance.
4
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t c Material Mapping: Volumetric (Ah/L)

»  Due to limited installation space in vehicles (as is well-known from portable consumer
electronics), volumetric capacity, and energy density have gained increasing importance.

»  Whereas the specific capacities of LIB and Li-metal battery materials range from 100 —
4,000 Wh/kg, the corresponding volumetric capacities only range from 500 — 2,500 Wh/L.
»  Practical volumetric electrode capacities do not only depend on the capacity of the active

material, but also on the used inactive materials and the electrode porosity.

»  Li/S and Li/air cells need more inactive materials and show higher porosities than LIB cells
-> reduced practical energy densities (Wh/L).

»  LIB cells show typical cell voltages of 3.5 - 4V. Li/S cells show typical cell voltages of 2V
- A Li/S battery system needs more cells to achieve similar voltages as a LIB-system.

»  Li/air battery system needs additional system components, such as air supply, air filter,
compressor, gas purification (CO,, H,O removal), etc. = reduced energy densities (Wh/L).
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classic Li-metal (CLIM)

A
1000 = Li-metal/LIB cathode
- LIB
< (advanced) Li/O,
= 800 - o
£ LIB (state-
c
8 o0 4 Ofthe-art)
> Cell level
g
w 400 = *
Wide ellipses indicate many
200 =~ different reports
"I‘
‘,-‘"'System level
0 Jass”
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Specific energy / Wh kg
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» Sulfur is an insulator

» Electrolyte wetting = Electrode porosity
ca. 30-40%

» Electrode needs substantial amounts of
conductive additive, e.g., conductive
carbon

WwnuIWNpy

A& » Binder - as “glue” for the particles

Sulfur Conductive Carbon Binder

1400 1=
1200]® » Often carbon weight and volume is

1000 disregarded in capacity and energy
1® calculations

800
600- \ » Type of carbon is important for
400 \ performance

» Many (fancy and expensive) carbons

Delivered capacity / mAh g (sulfur)

Em'_ m  Carbon Black . ) :
ol .~ © :Cabonfiber under investigation
0 50 100 150 200

Cycle number
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Bty System Designs in Addition to Improved Cell Chemistries
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» Goal 1: Higher energy density (Wh/L)

» Goal 2: Better cycle life, better efficiencies (less hysteresis)

» Goal 3: Higher safety and reliability (Li metal, air and sulfur reactivity)

Possibilities and Measures

T,

Less carbon content in air & sulfur electrodes (without compromising life?)

Thinner air electrodes (= For realization, the discharge product needs to be
dissolved in the electrolyte. Eventually, ag.-solvent-based electrolytes seem
to be a solution)

Immobilized/encapsulated sulfur = reduced dissolution in the electrolyte
Less irreversible reactions, better kinetics = better efficiencies

Decreasing Li reactivity with electrolyte and impurities (Li,S,, CO,, N,, H,O)
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Current electrolytes are problematic 5.0
» Large potential gap between charge and discharge 451 Sege Tyoces
curve (= ‘Potential hysteresis’) 2 40l
—> Search for catalysts to reduce hysteresis 5 .
B
» More charge is measured than what is calculated for % 30,
the Li + O, < Li,O, reaction indicates side reaction g \ Discharge Froceas
o 2.5
» Side relactlf}ns involve the (irreversible) reduction Vo, » 269/ 0, consumed
and oxidation of the electrolyte B I
. X . L 0.0 0.2 04 06 08 1.0
» (Intermediate) reaction species lithium super- Charge / mAh
« continuous electrolyte decomposition causes 5.0
the cell to dry out is] Charge Process
- Alternative electrolytes are investigated. In 2 a0l \
general, electrolytes are needed that: s
» E 3.5-:
£ 3.04 Discharge Process
c
g 2o |
v o 2.5 2 e/ 0, consumed
Available with Report purchase 2.&-1
v 00 02 04 06 08 10
v Charge [ mAh
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t : | A Way Out of the Dilemma?

Step 1: Li*-lon conducting solid electrolyte protects the reactive Li vs. the electrolyte.

Step 2: For the use of “thick” Li electrodes and in order to keep the contact between the firm solids
during cycling, an (also Li*-lon conductive) “moderating” interphase is needed.

Cyclmg \n II Cydmg

B Lithium metal liquid electrolyte B Lithium metal liquid electrolyte

B solid electrolyte

B solid electrolyte Bl moderating interphase

Summary: Can work: - if the moderating interphase is flexible and durable
- if the solid electrolyte does not dissolve and is mechanically stable
- if the electrolyte is electrochemically stable vs. anode and cathode

Ultimate goal: All Solid State Battery (ASSB, no liquid-cell component)

10
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t : Li/Air Cells with Various Electrolytes and with a Solid

Solid State Li/Air Cell All-solid-state battery (AASB):

No liquid component

z ® Ceramic electrolyte is thermally
stable and non-flammable

©
’ Unknowns:
I .‘ %9 Solubility of oxygen in the SE?

Lithium
Q,.

Wetting of the air electrode with
t the SE?

09 Conformation of Li/SE interface

o , during cycling?
ARG Conformation of the air
Solid electrode/SE interface during
1<)
@ Li Electrolyte =0 O, cycling?

Gas-Diffusion-Electrode
' (GDE)

1"
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Flammability, Leakage, Gas formation
Low and high temperature performance
Dissolution of electrode materials

Drying out by decomposition

Available with Report purchase

No/Less Flammability, Leakage, Gas,
Dissolution, Drying out

High temperature stability
Single ion conduction

Available with Report purchase
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Multi-Valent Cation Battery Chemistries:

(Be?*), Mg?*, (Ca2*), and Al3*

Period
Monovalent Bivalent Trivalent
z=1 : z=2 : z=3
\' Li © | - Be e |
1.52 0.60 : 1.11 0.31 :
| |
Ma Mg @ Al @
1.86 0.95 | 1.60 065 | 1.43 0.50
| |
‘ K ‘ ) 1§ ca@Q | . © ©
| |
2.31 1.33 | 1.97 099 | 1.22 0.62
| |
Rb‘ I ss & ! n @
\, @ ©
2.44 1.48 2.15 1.13 1.62 0.81

Atomic and lonic Radii in pm

» Larger ions need more space.

» There is a larger electrostatic repulsion between multivalent than monovalent ionic
guests in insertion host materials.

» Both influences lead to lower capacities; e.g. max. capacity of Li in graphite:
LiCg and K in graphite: KCs.

Metals that can be oxidized to
multivalent cations offer higher
capacity (in Ah) than monovalent
cations (Li*, Na*).

As a rule of thumb, ion mobility in
solids* decreases with a higher ionic
charge, in particular, when this
higher charge is concentrated on
the same ion volume (proportional
to ion radius).

* The term ‘solid’ covers:
Insertion electrode materials, solid
electrolytes, SEI, and CEl.
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